If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9x^2+14.7x+1=0
a = -4.9; b = 14.7; c = +1;
Δ = b2-4ac
Δ = 14.72-4·(-4.9)·1
Δ = 235.69
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14.7)-\sqrt{235.69}}{2*-4.9}=\frac{-14.7-\sqrt{235.69}}{-9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14.7)+\sqrt{235.69}}{2*-4.9}=\frac{-14.7+\sqrt{235.69}}{-9.8} $
| 4x-30+3x+15=180 | | -3(2y+3)-1=2y-4(y+6) | | -2.3=1.7-2y | | 250=3x(x=1)/2 | | -3(3x=15)-(10+x)=35 | | -5(7x-2)=-3(4x+3)-4 | | 3q=4 | | x-18+x+(1/2)x=180 | | 5/2x-x=x/10-14/5 | | (2z+7(3)=33 | | (x+3)/(12)=(2)/(7) | | 4k^2-12k=-9 | | 7-3(p-6)=27 | | 8x-(4x+9)=2x-47 | | -5x2+50x-120=0 | | 2x+5=-6x+45 | | -12.71-9.6c=15.13-6.4c | | 2(5g−1)5g−15gg=3 | | P(10)=20+4x | | 6s-1=8-2s | | x^2+x-127=0 | | 2(5x+7)=15x-1 | | 8/19=m/14 | | -9-19-3r=-r+4 | | x+8=14-5x | | -4.9x^2+34.3+1=0 | | x/10=2x/3-17 | | -35-7x=-7x=-7(x+5) | | 2(4+3x)=5(x-6) | | -17q=-18q+20 | | N+1=-3+n | | 6x^2-4x-2=6x^2-13x+6 |